(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(g(x)) → g(f(f(x)))
f(h(x)) → h(g(x))
f'(s(x), y, y) → f'(y, x, s(x))
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
f(g(x)) →+ g(f(f(x)))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0,0].
The pumping substitution is [x / g(x)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
f(g(x)) → g(f(f(x)))
f(h(x)) → h(g(x))
f'(s(x), y, y) → f'(y, x, s(x))
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
f(g(x)) → g(f(f(x)))
f(h(x)) → h(g(x))
f'(s(x), y, y) → f'(y, x, s(x))
Types:
f :: g:h → g:h
g :: g:h → g:h
h :: g:h → g:h
f' :: s → s → s → f'
s :: s → s
hole_g:h1_0 :: g:h
hole_f'2_0 :: f'
hole_s3_0 :: s
gen_g:h4_0 :: Nat → g:h
gen_s5_0 :: Nat → s
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
f, f'
(8) Obligation:
TRS:
Rules:
f(
g(
x)) →
g(
f(
f(
x)))
f(
h(
x)) →
h(
g(
x))
f'(
s(
x),
y,
y) →
f'(
y,
x,
s(
x))
Types:
f :: g:h → g:h
g :: g:h → g:h
h :: g:h → g:h
f' :: s → s → s → f'
s :: s → s
hole_g:h1_0 :: g:h
hole_f'2_0 :: f'
hole_s3_0 :: s
gen_g:h4_0 :: Nat → g:h
gen_s5_0 :: Nat → s
Generator Equations:
gen_g:h4_0(0) ⇔ hole_g:h1_0
gen_g:h4_0(+(x, 1)) ⇔ g(gen_g:h4_0(x))
gen_s5_0(0) ⇔ hole_s3_0
gen_s5_0(+(x, 1)) ⇔ s(gen_s5_0(x))
The following defined symbols remain to be analysed:
f, f'
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
f(
gen_g:h4_0(
+(
1,
n7_0))) →
*6_0, rt ∈ Ω(n7
0)
Induction Base:
f(gen_g:h4_0(+(1, 0)))
Induction Step:
f(gen_g:h4_0(+(1, +(n7_0, 1)))) →RΩ(1)
g(f(f(gen_g:h4_0(+(1, n7_0))))) →IH
g(f(*6_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
f(
g(
x)) →
g(
f(
f(
x)))
f(
h(
x)) →
h(
g(
x))
f'(
s(
x),
y,
y) →
f'(
y,
x,
s(
x))
Types:
f :: g:h → g:h
g :: g:h → g:h
h :: g:h → g:h
f' :: s → s → s → f'
s :: s → s
hole_g:h1_0 :: g:h
hole_f'2_0 :: f'
hole_s3_0 :: s
gen_g:h4_0 :: Nat → g:h
gen_s5_0 :: Nat → s
Lemmas:
f(gen_g:h4_0(+(1, n7_0))) → *6_0, rt ∈ Ω(n70)
Generator Equations:
gen_g:h4_0(0) ⇔ hole_g:h1_0
gen_g:h4_0(+(x, 1)) ⇔ g(gen_g:h4_0(x))
gen_s5_0(0) ⇔ hole_s3_0
gen_s5_0(+(x, 1)) ⇔ s(gen_s5_0(x))
The following defined symbols remain to be analysed:
f'
(12) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol f'.
(13) Obligation:
TRS:
Rules:
f(
g(
x)) →
g(
f(
f(
x)))
f(
h(
x)) →
h(
g(
x))
f'(
s(
x),
y,
y) →
f'(
y,
x,
s(
x))
Types:
f :: g:h → g:h
g :: g:h → g:h
h :: g:h → g:h
f' :: s → s → s → f'
s :: s → s
hole_g:h1_0 :: g:h
hole_f'2_0 :: f'
hole_s3_0 :: s
gen_g:h4_0 :: Nat → g:h
gen_s5_0 :: Nat → s
Lemmas:
f(gen_g:h4_0(+(1, n7_0))) → *6_0, rt ∈ Ω(n70)
Generator Equations:
gen_g:h4_0(0) ⇔ hole_g:h1_0
gen_g:h4_0(+(x, 1)) ⇔ g(gen_g:h4_0(x))
gen_s5_0(0) ⇔ hole_s3_0
gen_s5_0(+(x, 1)) ⇔ s(gen_s5_0(x))
No more defined symbols left to analyse.
(14) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
f(gen_g:h4_0(+(1, n7_0))) → *6_0, rt ∈ Ω(n70)
(15) BOUNDS(n^1, INF)
(16) Obligation:
TRS:
Rules:
f(
g(
x)) →
g(
f(
f(
x)))
f(
h(
x)) →
h(
g(
x))
f'(
s(
x),
y,
y) →
f'(
y,
x,
s(
x))
Types:
f :: g:h → g:h
g :: g:h → g:h
h :: g:h → g:h
f' :: s → s → s → f'
s :: s → s
hole_g:h1_0 :: g:h
hole_f'2_0 :: f'
hole_s3_0 :: s
gen_g:h4_0 :: Nat → g:h
gen_s5_0 :: Nat → s
Lemmas:
f(gen_g:h4_0(+(1, n7_0))) → *6_0, rt ∈ Ω(n70)
Generator Equations:
gen_g:h4_0(0) ⇔ hole_g:h1_0
gen_g:h4_0(+(x, 1)) ⇔ g(gen_g:h4_0(x))
gen_s5_0(0) ⇔ hole_s3_0
gen_s5_0(+(x, 1)) ⇔ s(gen_s5_0(x))
No more defined symbols left to analyse.
(17) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
f(gen_g:h4_0(+(1, n7_0))) → *6_0, rt ∈ Ω(n70)
(18) BOUNDS(n^1, INF)